两年内从零到每月十亿 PV 的发展来谈 Pinterest 的架构设计 已翻译 100%

oschina 投递于 2013/04/16 13:24 (共 17 段, 翻译完成于 04-19)
阅读 24445
收藏 381
40
加载中

Pinterest正经历了指数级曲线般的增长,每隔一个半月翻翻。在这两年里,Pinterest,从 每月PV量0增长到10亿,从两名成立者和一个工程师成长为四十个工程师,从一台MySQL 服务器增长到180台Web 服务器(Web Engine),240台接口服务器(API Engine), 88台MySQL 数据库 (cc2.8xlarge) ,并且每台DB有一个备份服务器,110台Redis 实例服务(Redis Instance),200台 Memcache 实例服务(Memcache  Instance)。

令人叹为观止的增长。想一探Pinterest的传奇吗?我们请来了Pinterest的两位创立者Yashwanth Nelapati 和 Marty Weiner,他们将以 Scaling Pinterest为题讲述关于Pinterest架构的充满戏剧化的传奇故事。他们说如果能在一年半前飞速发展时能看到有人做类似题材的演讲的话,他们就会有更多的选择,以避免自己在这一年半里做出的很多错误的决定。

这是一个很不错的演讲,充满了令人惊讶的细节。同时这个演讲也是很务实的,归根结底,它带来了可让大家选择的策略。极度推荐

ajavaloser
翻译于 2013/04/16 13:56
8

这篇演讲中有两个我最为看重的经验:

1.强大的架构在处理增长时通过简单增加相同的东西(服务器)来应对,同时还能保证系统的正确性。当遇到某种(性能)问题时,你想通过砸钱来扩容指的是你可以简单增加服务器(boxes)。如果你的架构能够做到这一点,那它就如金子一般强大而珍贵!

2. 当某些(性能问题)快到极限时大多数技术都会以他们自己的方式失败。这导致他们在审核工具时要考虑以下一些特性:成熟,好且简单,有名气且用的人多,良好的支持,持续的优异性能,很少失败,开源。按照这样的标准,他们选择了:MySQL, Solr, Memcache, and Redis,放弃了Cassandra ,Mongo。

这两点经验是相互联系的。遵循(2)中提到的标准的工具可以在扩容时简单增加服务器(boxes).当负载增加了,成熟的产品更少会有问题。当你遇到问题时,你至少希望它的社区团队能够帮助解决。当你使用的工具过于技巧化和过于讲究时,你会发现你遇到一堵无法逾越的墙。

在这段演讲里,碎片化(sharding)优于集群(clusterting)的观点是我认为最好的一部分。为了应对增长,通过增加资源,更少失败的模式,成熟,简单,良好的支持,最终圆满完成。请注意他们选择的工具以sharding的方式增长,而不是clustering。关于他们为什么选择sharding和他们如何做sharding是很有趣的事,这很可能触及到你以前未考虑过的场景。

现在,让我们看看Pinterest如何扩容:

(本段有些术语黑话不是很明白,望纠错)

ajavaloser
翻译于 2013/04/16 14:40
4

基本概念

  • Pins是一幅关于其他信息的集合的图片,描述了为什么它对于用户来说很重要,可以链回到他们发现它的地方。
  • Pinterest是一个社交网络。你可以追踪人或者板报(boards).
  • Database:它包含了拥有pins的板报(boards)和拥有板报(boards)的人 ,可以追踪或重新建立(repin)联系,还包含认证信息。

启动于2010年三月--自我发现时期

此时此刻,你甚至不知道你在做的这个产品将要做什么。你有想法,迭代开发更新产品的频率很高。最终因遇到一些在现实生活中永远不会遇到的奇怪的简短的MySQL查询而结束。

早期的一些数字:

  • 两个创始人
  • 一个工程师
  • Rackspace托管服务器
  • 一个小型web引擎
  • 一个小型MySQL数据库
ajavaloser
翻译于 2013/04/16 15:05
1

2011年1月

扔在潜伏前进中,产品得到了一些用户反馈。以下是数据:

  • Amazon EC2 + S3 + CloudFront云服务
  • 一台NGinX,4台Web 引擎(作冗余用,不是真正为了负载)
  • 一台MySQL数据库+一台读备份服务器(防止主服务器宕机)
  • 一个任务队列+两个任务处理
  • 一台MongoDB(为了计数)
  • 两个工程师
至2011年9月--试运行阶段


每一个半月翻翻的疯狂增长阶段。

  • 当高速发展时每个晚上每个星期都会有技术失败的情况发生
  • 这时,你阅读大量白皮书,它会告诉你把这个增加进来就行了。当他们添加了大量技术时,毫无例外都失败了。
  • 最终你得到一个极为复杂的架构图:
    • Amazon EC2 + S3 + CloudFront
    • 2NGinX, 16 Web Engines + 2 API Engines
    • 5 Functionally Sharged MySQL DB + 9 读备份
    • 4 Cassandra 节点
    • 15 Membase 节点(分成三个单独的集群)
    • 8 Memcache 节点
    • 10 Redis 节点
    • 3 任务路由(Task Routers)+ 4 Task Processors
    • 4 ElasticSearch 节点
    • 3 Mongo集群
    • 3名工程师
  • 5种主要的数据库技术只为了应付他们自己的数据
  • 增长极快以至MySQL负载很高,而其他一些技术都快到达极限
  • 当你把某些技术的应用推至极限时,他们又以自己的方式宣告失败。
  • 放弃一些技术并问它们到底能做什么。对每一件事情重新构架,海量工作量。
ajavaloser
翻译于 2013/04/16 15:32
1

架构成熟 2012 1月

重新设计的系统架构如下:
  • Amazon EC2 + S3 + Akamai, ELB
  • 90 Web Engines + 50 API Engines
  • 66 MySQL DBs (m1.xlarge) + 1 slave each
  • 59 Redis Instances
  • 51 Memcache Instances
  • 1 Redis Task Manager + 25 Task Processors
  • Sharded Solr
  • 6 Engineers .使用Mysql,Redis,Memcache Solr,他们的优势是简单高效并且是成熟的技术。 随着Web流量增加,Iphone的流量也随之开始越来越大。
    稳定期 2012 10月 12 仅仅在一月份以后,大概就有4倍的流量增长。 系统架构数据如下: The numbers now looks like:
    • Amazon EC2 + S3 + Edge Cast,Akamai, Level 3
    • 180 Web Engines + 240 API Engines
    • 88 MySQL DBs (cc2.8xlarge) + 1 slave each
    • 110 Redis Instances
    • 200 Memcache Instances
    • 4 Redis Task Manager + 80 Task Processors
    • Sharded Solr
    • 40 Engineers (and growing)
    注意到,此时的架构应该是合理的,只是通过增加更多的服务器。你认为此时通过更多的投入来应对这么大的规模的流量,投入更多的硬件来解决这个问题, 下一步 迁移到SSDs
葱油拌面
翻译于 2013/04/16 16:54
3

为什么是Amazon EC2/S3

  • 相当的可靠。数据中心也会宕机, Multitenancy 加入了不少风险,但不是坏处。
  • 良好的汇报和支持。他们确实有很不错的架构师而且他们知道问题在哪里。
  • 良好的额外服务支持(peripherals),特别是当你的应用处于增长时期。你可能在App Engine中转晕,你不用亲自去实现,只需要简单和他们的服务打交道,例如maged cache,负载均衡,映射和化简,数据库和其他所有方面。Amazon的服务特别适合起步阶段,之后你可以招聘工程师来优化程序。
  • 分秒钟获得新的服务实例。这是云服务的威力。特别是当你只有两名工程师,你不用担心容量规划或者为了10台memcache服务器等上两周。10台memcache服务器几分钟内就能加完。
  • 反对的理由:有限的选择。直到最近你才能用SSD而且还没高内存配置的方案。
  • 赞成的理由:还是有限的选择。你不需要面对一大堆配置迥异的服务器。

为什么是 MySQL?

  • 非常成熟
  • 非常耐用。从不宕机且不会丢失数据。
  • 招聘方便,一大堆工程师懂MySQL.
  • 反应时间和请求数量(requies rate,我认为是request rate参考下面)是线性增长的。有些数据库技术的反应时间在请求飙升时不是很好。
  • 很好的软件支持-- XtraBackup, Innotop, Maatkit
  • 很好的社区,问的问题总能轻易获取到答案
  • 很好的厂商支持,譬如Percona
  • 开源--这一点很重要,特别是你刚开始没有很多资金支持时。
ajavaloser
翻译于 2013/04/16 16:14
1

为什么选择Memcache?

  • 非常成熟
  • 非常简单。它就是一个socket的哈希表。
  • 性能一直很好
  • 很多人知道并喜欢
  • 从不崩溃
  • 免费

为什么选择Redis?

  • 还不成熟,但它是非常好并且相当简单。
  • 提供了各种的数据结构。
  • 可以持久化和复制,并且可以选择如何实现它们。你可以用MySQL风格持久化,或者你可以不要持久化,或者你只要3小时的持久化。
  • Redis上的数据只保存3个小时,没有3小时以上的复本。他们只保留3个小时的备份。
  • 如果存储数据的设备发生故障,而它们只是备份了几个小时。这不是完全可靠的,但它很简单。你并不需要复杂的持久化和复制。这是一个更简单,更便宜的架构。
  • 很多人知道并喜欢
  • 性能一直很好
  • 很少的一些故障。你需要了解一些小故障,学习并解决它们,使它越来越成熟。
  • 免费
hbdhj
翻译于 2013/04/16 15:59
2

Solr

  • 只需要几分钟的安装时间,就可以投入使用
  • 不能扩展到多于一台的机器上(最新版本并非如此)
  • 尝试弹性搜索,但是以Pinterest的规模来说,可能会因为零碎文件和查询太多而产生问题。
  • 选择使用Websolr,但是Pinterest拥有搜索团队,将来可能会开发自己的版本。

集群vs.分片

  • 在迅速扩展的过程中,Pinterest认识到每次负载的增加,都需要均匀的传播他们的数据。
  • 针对问题先确定解决方案的范围,他们选择的范围是集群和分片之间的一系列解决方案。
lidashuang
翻译于 2013/04/18 23:01
3

集群 —— 所有事情都是自动化的

  • 示例: Cassandra, MemBase, HBase
  • 结论: 太可怕了,不是在现在,可能在将来,但现在太复杂了,有非常多的故障点
  • 属性:
    • 自动化数据分布
    • 可移动数据
    • 可重新进行分布均衡
    • 节点间可通讯,大量的握手、对话
  • 有点:
    • 自动伸缩数据存储,至少白皮书上是这么说的
    • 安装简单
    • 在空间中分布存储你的数据,可在不同区域有数据中心
    • 高可用性
    • 负载均衡
    • 没有单点故障
  • 缺点 (来自用户一手的体验):
    • 还是相当年轻不成熟
    • 还是太复杂,一大堆节点必须对称的协议,这是一个在生产环境中难以解决的问题。
    • 很少的社区支持,有一个沿着不同产品线的分裂社区会减少每个阵营的支持。
    • 很少工程师有相关的知识,可能是很多工程师都没用过 Cassandra.
    • 复杂和和可怕的升级机制
    • 集群管理算法是一个 SPOF 单点故障,如果有个 bug 影响每个节点,这可能会宕机 4 次。
    • 集群管理器编码复杂,有如下一些失败的模式:
      • 数据重新均衡中断:当一个新机器加入然后数据开始复制,它被卡住了。你做什么工作?没有工具来找出到底发生了什么。没有社会的帮助,所以他们被困。他们又回到了MySQL。
      • 所有节点的数据损坏. What if there’s a bug that sprays badness into the write log across all of them and compaction or some other mechanism stops? Your read latencies increase. All your data is screwed and the data is gone.
      • 均衡不当而且很难修复. 非常常见,如果你有10个节点,你会注意到所有节点都在一个节点上,有一个手工处理方式,但会将所有负载分布到一个单节点上
      • 权威数据失效. 集群方案是很智能的。In one case they bring in a new secondary. At about 80% the secondary says it’s primary and the primary goes to secondary and you’ve lost 20% of the data. Losing 20% of the data is worse than losing all of it because you don’t know what you’ve lost.

红薯
翻译于 2013/04/19 08:58
5

分片(sharding) - 全凭人手

  • 裁决: 分片是赢家。我觉得他们分片的方案与Flicker非常相似。
  • 特点:
    • 如果去掉集群方式下所有不好的特点,就得到了分片。
    • 人工对数据进行分布。
    • 不移动数据。
    • 通过切分数据来分担负荷。
    • 节点不知道其它节点的存在。某些主节点控制一切。
  • 优点:
    • 可以通过切分数据库来扩大容量。
    • 在空间上分布数据。
    • 高可用。
    • 负载均衡。
    • 放置数据的算法十分简单。这是最主要的原因。虽然存在单点(SPOF),但只是很小的一段代码,而不是复杂到爆的集群管理器。过了第一天就知道有没有问题。
    • ID的生成很简单。
  • 缺点:
    • 无法执行大多数连接。
    • 没有事务功能。可能会出现写入某个数据库失败、而写入其它库成功的情况。
    • 许多约束只能转移到应用层实现。
    • schema的修改需要更多的规划。
    • 如果要出报表,必须在所有分片上分别执行查询,然后自己把结果合起来。
    • 连接只能转移到应用层实现。
    • 应用必须应付以上所有的问题。

何时选择分片?

  • 当有几TB的数据时,应该尽快分片。
  • 当Pin表行数达到几十亿,索引超出内存容量,被交换到磁盘时。
  • 他们选出一个最大的表,放入单独的数据库。
  • 单个数据库耗尽了空间。
  • 然后,只能分片。
AlfredCheung
翻译于 2013/04/18 11:07
4
本文中的所有译文仅用于学习和交流目的,转载请务必注明文章译者、出处、和本文链接。
我们的翻译工作遵照 CC 协议,如果我们的工作有侵犯到您的权益,请及时联系我们。
加载中

评论(38)

qwfys
qwfys
+1
w
wanghuan
10s of billions 是10亿还是100亿?我开始怀疑自己~
我的她最美
我的她最美

引用来自“我的她最美”的评论

集群 —— 所有事情都是自动化的
这下面的有点是否写错?

“有点”
我的她最美
我的她最美
集群 —— 所有事情都是自动化的
这下面的有点是否写错?
chen xiangkai
chen xiangkai
No schema changes required and a new index requires a new table.

一个新的索引需要一个新的表
为什么?
chen xiangkai
chen xiangkai
对象和映射章节中:
针对对象,每个本地ID都映射成MySQL Blob。开始时Blob使用的是JSON格式,之后会给转换成序列化的Thrift。

这句话没看懂,高手指点下。
天若子
天若子
................................
花未眠
花未眠
曾经就职于一家模仿pinterest的公司,做了一个叫做pinspire的网站,架构跟pinterest极其相似,在职的时候还是起步阶段,和pinterest的前期用的技术差不多,后期如何就不太清楚了,对于做技术的,可以学习了解一下别人的架构,给自己充电了。。。
何谓
何谓
新人,没看懂
skywalk
skywalk
好文!慢慢看!
返回顶部
顶部