Python的并发处理能力臭名昭著。先撇开线程以及GIL方面的问题不说,我觉得多线程问题的根源不在技术上而在于理念。大部分关于Pyhon线程和多进程的资料虽然都很不错,但却过于细节。这些资料讲的都是虎头蛇尾,到了真正实际使用的部分却草草结束了。
在DDG https://duckduckgo.com/搜索“Python threading
tutorial”关键字,结果基本上却都是相同的类+队列的示例。
标准线程多进程,生产者/消费者示例:
这里是代码截图,如果用其他模式贴出大段代码会很不美观。文本模式点这里 here
Mmm.. 感觉像是java代码
在此我不想印证采用生产者/消费者模式来处理线程/多进程是错误的— 确实没问题。实际上这也是解决很多问题的最佳选择。但是,我却不认为这是日常工作中常用的方式。
一开始,你需要一个执行下面操作的铺垫类。接着,你需要创建一个传递对象的队列,并在队列两端实时监听以完成任务。(很有可能需要两个队列互相通信或者存储数据)
Worker越多,问题越大.
下一步,你可能会考虑把这些worker放入一个线程池一边提高Python的处理速度。下面是
IBM tutorial 上关于线程较好的示例代码。这是大家常用到的利用多线程处理web页面的场景
Seriously, Medium. Fix your code support. Code is Here.
感觉效果应该很好,但是看看这些代码!初始化方法、线程跟踪,最糟的是,如果你也和我一样是个容易犯死锁问题的人,这里的join语句就要出错了。这样就开始变得更加复杂了!
到现在为止都做了些什么?基本上没什么。上面的代码都是些基础功能,而且很容易出错。(天啊,我忘了写上在队列对象上调用task_done()方法(我懒得修复这个问题在重新截图)),这真是性价比太低。所幸的是,我们有更好的办法.
引入:Map
Map是个很酷的小功能,也是简化Python并发代码的关键。对那些不太熟悉Map的来说,它有点类似Lisp.它就是序列化的功能映射功能. e.g.
urls = [', '] results = map(urllib2.urlopen, urls)
这里调用urlopen方法,并把之前的调用结果全都返回并按顺序存储到一个集合中。这有点类似
results = [] for url in urls: results.append(urllib2.urlopen(url))
Map能够处理集合按顺序遍历,最终将调用产生的结果保存在一个简单的集合当中。
为什么要提到它?因为在引入需要的包文件后,Map能大大简化并发的复杂度!
支持Map并发的包文件有两个:
Multiprocessing,还有少为人知的但却功能强大的子文件 multiprocessing.dummy. .
准备使用带有并发的map功能首先要导入相关包文件:
from multiprocessing import Pool from multiprocessing.dummy import Pool as ThreadPool
然后初始化:
pool = ThreadPool()
就这么简单一句解决了example2.py中build_worker_pool的功能. 具体来讲,它首先创建一些有效的worker启动它并将其保存在一些变量中以便随时访问。
pool对象需要一些参数,但现在最紧要的就是:进程。它可以限定线程池中worker的数量。如果不填,它将采用系统的内核数作为初值.
评论删除后,数据将无法恢复
评论(32)
mark,很赞~
这文章不错,收藏!