5
回答
在线请教大神们帮忙证明点在四边形内的数学函数模型问题。
【腾讯云】学生服务器套餐10元/月 >>>   

在线求助大神,如何求证点P在四边形内,急急急!谢谢!

<无标签>
举报
Larry_Rui
发帖于2年前 5回/107阅
共有5个答案 最后回答: 2年前
目测LZ初中数学学的一塌糊涂
--- 共有 3 条评论 ---
Larry_Rui回复 @Feng_Yu : 谢谢~!我要回去好好脑补一下初中数学了。。 2年前 回复
Feng_Yu回复 @Larry_Rui : 只需证明P点和AB, BC, CD, AD四条直线的位置关系即可,实在只是初中的几何内容 2年前 回复
Larry_Rui是啊,,,基本全部还给老师了。。求大神帮忙个。。谢谢! 2年前 回复

想到两个办法,一个是求算出APB BPC CPD DPA 的夹角,如果夹角之和=360度   那就是在四边形内(包括在四条线段上) ,如果需要不在四条线段上,只需要判断夹角不能等于180度, 如果小于360度,则在四边形外面,

一个是求出APB BPC CPD DPA面积,如果四个三角形面积 = 四边形面积 那就是在四边形内(包括在四条线段上),如果需要不在四条线段上,只需要判断面积不能为0

纯粹靠目测,没有任何数学证明,你可以尝试一下

--- 共有 1 条评论 ---
Larry_Rui好哒,非常感谢! 2年前 回复
能确定是矩形就很简单,如果考虑凹四边形,就稍微麻烦一点,计算机几何的方法是跟明确在四边形外的一点连线,然后算交点的个数,奇数个则在形内,偶数个则在形外
--- 共有 1 条评论 ---
Larry_Rui明白,谢谢! 2年前 回复

引用来自“Frank_mc”的评论

能确定是矩形就很简单,如果考虑凹四边形,就稍微麻烦一点,计算机几何的方法是跟明确在四边形外的一点连线,然后算交点的个数,奇数个则在形内,偶数个则在形外
+1
--- 共有 1 条评论 ---
Larry_RuiThx 2年前 回复
顶部