Hive 随谈(六)– Hive 的扩展特性

红薯 发布于 2010/04/21 18:02
阅读 3K+
收藏 3

Hive 是一个很开放的系统,很多内容都支持用户定制,包括:

  • 文件格式:Text File,Sequence File
  • 内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
  • 用户提供的 map/reduce 脚本:不管什么语言,利用 stdin/stdout 传输数据
  • 用户自定义函数: Substr, Trim, 1 – 1
  • 用户自定义聚合函数: Sum, Average…… n – 1

File Format

TextFile SequenceFIle RCFFile
Data type Text Only Text/Binary Text/Binary
Internal Storage Order Row-based Row-based Column-based
Compression File Based Block Based Block Based
Splitable YES YES YES
Splitable After Compression No YES YES
  CREATE TABLE mylog ( user_id BIGINT, page_url STRING, unix_time INT)
STORED AS TEXTFILE;

当用户的数据文件格式不能被当前 Hive 所识别的时候,可以自定义文件格式。可以参考 contrib/src/java/org/apache/hadoop/hive/contrib/fileformat/base64 中的例子。写完自定义的格式后,在创建表的时候指定相应的文件格式就可以:

  CREATE TABLE base64_test(col1 STRING, col2 STRING)
STORED AS
INPUTFORMAT 'org.apache.hadoop.hive.contrib.
fileformat.base64.Base64TextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.contrib.
fileformat.base64.Base64TextOutputFormat';

SerDe

SerDe 是 Serialize/Deserilize 的简称,目的是用于序列化和反序列化。序列化的格式包括:

  • 分隔符(tab、逗号、CTRL-A)
  • Thrift 协议

反序列化(内存内):

  • Java Integer/String/ArrayList/HashMap
  • Hadoop Writable 类
  • 用户自定义类

目前存在的 Serde 见下图:

其中,LazyObject 只有在访问到列的时候才进行反序列化。 BinarySortable:保留了排序的二进制格式。

当存在以下情况时,可以考虑增加新的 SerDe:

  • 用户的数据有特殊的序列化格式,当前的 Hive 不支持,而用户又不想在将数据加载至 Hive 前转换数据格式。
  • 用户有更有效的序列化磁盘数据的方法。

用户如果想为 Text 数据增加自定义 Serde ,可以参照 contrib/src/java/org/apache/hadoop/hive/contrib/serde2/RegexSerDe.java 中的例子。RegexSerDe 利用用户提供的正则表倒是来反序列化数据,例如:

  CREATE TABLE apache_log(
host STRING,
identity STRING,
user STRING,
time STRING,
request STRING,
status STRING,
size STRING,
referer STRING,
agent STRING)
ROW FORMAT
SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
WITH SERDEPROPERTIES
( "input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) (-|\\[[^\\]]*\\])
([^ \"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)(?: ([^ \"]*|\"[^\"]*\")
([^ \"]*|\"[^\"]*\"))?",
"output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s";)
STORED AS TEXTFILE;

用户如果想为 Binary 数据增加自定义的 SerDE,可以参考例子:serde/src/java/org/apache/hadoop/hive/serde2 /binarysortable,例如:

  CREATE TABLE mythrift_table
ROW FORMAT SERDE
'org.apache.hadoop.hive.contrib.serde2.thrift.ThriftSerDe'
WITH SERDEPROPERTIES (
"serialization.class" = "com.facebook.serde.tprofiles.full",
"serialization.format" = "com.facebook.thrift.protocol.TBinaryProtocol";);

Map/Reduce 脚本(Transform)

用户可以自定义 Hive 使用的 Map/Reduce 脚本,比如:

  FROM (
SELECT TRANSFORM(user_id, page_url, unix_time)
USING 'page_url_to_id.py'
AS (user_id, page_id, unix_time)
FROM mylog
DISTRIBUTE BY user_id
SORT BY user_id, unix_time)
mylog2
SELECT TRANSFORM(user_id, page_id, unix_time)
USING 'my_python_session_cutter.py' AS (user_id, session_info);

Map/Reduce 脚本通过 stdin/stdout 进行数据的读写,调试信息输出到 stderr。

UDF(User-Defined-Function)

用户可以自定义函数对数据进行处理,例如:

  add jar build/ql/test/test-udfs.jar;
CREATE TEMPORARY FUNCTION testlength
AS 'org.apache.hadoop.hive.ql.udf.UDFTestLength';

SELECT testlength(src.value) FROM src;

DROP TEMPORARY FUNCTION testlength;

UDFTestLength.java 为:

  package org.apache.hadoop.hive.ql.udf; 

public class UDFTestLength extends UDF {
public Integer evaluate(String s) {
if (s == null) {
return null;
}
return s.length();
}
}

自定义函数可以重载:

  add jar build/contrib/hive_contrib.jar;
CREATE TEMPORARY FUNCTION example_add
AS 'org.apache.hadoop.hive.contrib.udf.example.UDFExampleAdd';

SELECT example_add(1, 2) FROM src;
SELECT example_add(1.1, 2.2) FROM src;

UDFExampleAdd.java:

  public class UDFExampleAdd extends UDF {
public Integer evaluate(Integer a, Integer b) {
if (a = null || b = null)
return null;
return a + b;
}

public Double evaluate(Double a, Double b) {
if (a = null || b = null)
return null;
return a + b;
}
}

%%

在使用 UDF 的时候,会自动进行类型转换,这个 java 或者 C 中的类型转换有些类似,比如:

  SELECT example_add(1, 2.1) FROM src;

的结果是 3.1,这是因为 UDF 将类型为 Int 的参数 “1″ 转换为 double。

类型的隐式转换是通过 UDFResolver 来进行控制的,并且可以根据不同的 UDF 进行不同的控制。

UDF 还可以支持变长的参数,例如 UDFExampleAdd.java:

  public class UDFExampleAdd extends UDF {
public Integer evaluate(Integer... a) {
int total = 0;
for (int i=0; i<a.length; i++)
if (a[i] != null) total += a[i];

return total;
} // the same for Double public Double evaluate(Double... a) }

使用例子为:

  SELECT example_add(1, 2) FROM src;
SELECT example_add(1, 2, 3) FROM src;
SELECT example_add(1, 2, 3, 4.1) FROM src;

综上,UDF 具有以下特性:

  • 用 java 写 UDF 很容易。
  • Hadoop 的 Writables/Text 具有较高性能。
  • UDF 可以被重载。
  • Hive 支持隐式类型转换。
  • UDF 支持变长的参数。
  • genericUDF 提供了较好的性能(避免了反射)。

UDAF(User-Defined Aggregation Funcation)

例子:

  SELECT page_url, count(1), count(DISTINCT user_id) FROM mylog;

UDAFCount.java:

  public class UDAFCount extends UDAF {
public static class Evaluator implements UDAFEvaluator {
private int mCount;

public void init() {
mcount = 0;
}

public boolean iterate(Object o) {
if (o!=null)
mCount++;

return true;
}

public Integer terminatePartial() {
return mCount;
}

public boolean merge(Integer o) {
mCount += o;
return true;
}

public Integer terminate() {
return mCount;
}
}

UDAF 总结:

  • 编写 UDAF 和 UDF 类似
  • UDAF 可以重载
  • UDAF 可以返回复杂类
  • 在使用 UDAF 的时候可以禁止部分聚合功能

UDF,UDAF 和 MR 脚本的对比:

加载中
0
温敏锋
看了你写的关于hdaf的文章,为什么我总是失败??
max_test是我完全按照hive中的UDAFMax写的,只是包名换了
 select max_test(   seller_id) from foo group by collector_id;
FAILED: Error in semantic analysis: line 1:19 Expression Not In Group By Key seller_id

select max_test(   collector_id) from foo group by collector_id;
FAILED: Error in semantic analysis: line 1:7 Invalid Function max_test

但 select max(   seller_id) from foo group by collector_id;   这样写就是对的,希望前辈能指点下!
返回顶部
顶部