Tencent ML-Images 正在参加 2021 年度 OSC 中国开源项目评选,请投票支持!
Tencent ML-Images 在 2021 年度 OSC 中国开源项目评选 中已获得 {{ projectVoteCount }} 票,请投票支持!
2021 年度 OSC 中国开源项目评选 正在火热进行中,快来投票支持你喜欢的开源项目!
2021 年度 OSC 中国开源项目评选 >>> 中场回顾
Tencent ML-Images 获得 2021 年度 OSC 中国开源项目评选「最佳人气项目」 !
授权协议 Apache
开发语言 Python 查看源码 »
操作系统 跨平台
软件类型 开源软件
开源组织 腾讯
地区 国产
投 递 者 h4cd
适用人群 未知
收录时间 2018-10-17

软件简介

Tencent ML-Images 由多标签图像数据集 ML-Images 与业内目前同类深度学习模型中精度最高的深度残差网络 ResNet-101 构成。

  • ML-Images: 最大的开源多标签图像数据库,包括 17,609,752 个训练集和 88,739 个验证图像 URL,最多可标注 11,166 个类别。

  • Resnet-101 model: 在 ML-Images 上进行了预训练,并通过迁移学习在 ImageNet 上实现了 top-1 精度 80.73%。

该项目的主要内容包括:

  • ML-Images 数据集的全部图像 URL,以及相应的类别标注。出于原始图像版权的考虑,此次开源将不直接提供原始图像,用户可利用我们提供的下载代码和 URL 自行下载图像。

  • ML-Images 数据集的详细介绍,包括图像来源、图像数量、类别数量、类别的语义标签体系,标注方法,以及图像的标注数量等统计量。

  • 完整的代码和模型。提供的代码涵盖从图像下载,图像预处理,基于 ML-Images 的预训练,基于 ImageNet 的迁移学习,到基于训练所得模型的图像特征提取的完整流程。该项目提供了基于小数据集的训练示例,以方便用户快速体验我们的训练流程。该项目还提供了非常高精度的 ResNet-101 模型(在单标签基准数据集 ImageNet 的验证集上的 top-1 精度为 80.73%)。用户可根据自身需求,随意选用该项目的代码或模型。

展开阅读全文

代码

的 Gitee 指数为
超过 的项目

评论

点击引领话题📣 发布并加入讨论🔥
暂无内容
发表了博客
{{o.pubDate | formatDate}}

{{formatAllHtml(o.title)}}

{{parseInt(o.replyCount) | bigNumberTransform}}
{{parseInt(o.viewCount) | bigNumberTransform}}
没有更多内容
暂无内容
发表了问答
{{o.pubDate | formatDate}}

{{formatAllHtml(o.title)}}

{{parseInt(o.replyCount) | bigNumberTransform}}
{{parseInt(o.viewCount) | bigNumberTransform}}
没有更多内容
暂无内容
暂无内容
0 评论
17 收藏
分享
OSCHINA
登录后可查看更多优质内容
返回顶部
顶部