PLSC 正在参加 2021 年度 OSC 中国开源项目评选,请投票支持!
PLSC 在 2021 年度 OSC 中国开源项目评选 中已获得 {{ projectVoteCount }} 票,请投票支持!
2021 年度 OSC 中国开源项目评选 正在火热进行中,快来投票支持你喜欢的开源项目!
2021 年度 OSC 中国开源项目评选 >>> 中场回顾
PLSC 获得 2021 年度 OSC 中国开源项目评选「最佳人气项目」 !
授权协议 Apache-2.0
开发语言 Python 查看源码 »
操作系统 跨平台
软件类型 开源软件
开源组织 百度
地区 国产
投 递 者 xplanet
适用人群 未知
收录时间 2020-02-19

软件简介

飞桨大规模分类(PLSC: PaddlePaddle Large Scale Classification)库是基于飞桨平台构建的超大规模分类库,为用户提供从训练到部署的大规模分类问题全流程解决方案。

下载安装命令

## CPU版本安装命令
pip install -f https://paddlepaddle.org.cn/pip/oschina/cpu paddlepaddle

## GPU版本安装命令
pip install -f https://paddlepaddle.org.cn/pip/oschina/gpu paddlepaddle-gpu

PLSC 特性

  • 支持超大规模分类:单机8张V100 GPU配置下支持的最大类别数扩大2.52倍,支持的类别数随GPU卡数的增加而增加;
  • 训练速度快:单机8张V100 GPU配置下,基于ResNet50模型的百万类别分类训练速度2,122.56 images/s, 并支持多机分布式训练和混合精度训练;
  • 支持训练训练卡数的调整:加载模型参数的热启动训练可以使用和预训练不同的GPU卡数,并自动进行参数转换;
  • base64格式图像数据预处理:提供base64格式图像数据的预处理,包括数据的全局shuffle,数据自动切分;
  • 支持自定义模型:PLSC内建ResNet50、ResNet101和ResNet152模型,并支持用户自定义模型;
  • 支持模型参数在HDFS文件系统的自动上传和下载;
  • 全流程解决方案:提供从训练到部署的大规模分类问题全流程解决方案。
展开阅读全文

代码

的 Gitee 指数为
超过 的项目

评论

点击引领话题📣
2021/04/28 13:56

潘云鹤院士:OpenKS 定义并丰富了知识计算的内涵

4 月 24 日,浙江大学召开 OpenKS(知目)知识计算引擎开源项目发布会,宣布浙大与合作单位研发的OpenKS知识计算引擎取得重大进展。中国工程院院士、国家新一代人工智能战略咨询委员会组长、浙江大学计算机学院教授潘云鹤表示,OpenKS作为知识计算引擎项目中的基础软件架构,定义并丰富了知识计算的内涵,是我国在大数据人工智能方向的又一次有益尝试。 (浙江大学OpenKS“知目”知识计算引擎开源项目发布会) 该项目由浙江大学牵头...

0
5
没有更多内容
加载失败,请刷新页面
点击加载更多
加载中
下一页
发表了博客
{{o.pubDate | formatDate}}

{{formatAllHtml(o.title)}}

{{parseInt(o.replyCount) | bigNumberTransform}}
{{parseInt(o.viewCount) | bigNumberTransform}}
没有更多内容
暂无内容
发表了问答
{{o.pubDate | formatDate}}

{{formatAllHtml(o.title)}}

{{parseInt(o.replyCount) | bigNumberTransform}}
{{parseInt(o.viewCount) | bigNumberTransform}}
没有更多内容
暂无内容
暂无内容
0 评论
11 收藏
分享
OSCHINA
登录后可查看更多优质内容
返回顶部
顶部