PaddleSeg 正在参加 2021 年度 OSC 中国开源项目评选,请投票支持!
PaddleSeg 在 2021 年度 OSC 中国开源项目评选 中已获得 {{ projectVoteCount }} 票,请投票支持!
2021 年度 OSC 中国开源项目评选 正在火热进行中,快来投票支持你喜欢的开源项目!
2021 年度 OSC 中国开源项目评选 >>> 中场回顾
PaddleSeg 获得 2021 年度 OSC 中国开源项目评选「最佳人气项目」 !
授权协议 Apache-2.0
开发语言 Python 查看源码 »
操作系统 跨平台
软件类型 开源软件
开源组织 百度
地区 国产
投 递 者 白开水不加糖
适用人群 未知
收录时间 2020-01-02

软件简介

PaddleSeg 是基于 PaddlePaddle 开发的语义分割库,覆盖了 DeepLabv3 +,U-Net,ICNet 三类主流的分割模型。通过统一的配置,帮助用户更方便地完成从训练到部署的全流程图像分割应用。

## CPU版本安装命令
pip install -f https://paddlepaddle.org.cn/pip/oschina/cpu paddlepaddle

## GPU版本安装命令
pip install -f https://paddlepaddle.org.cn/pip/oschina/gpu paddlepaddle-gpu

PaddleSeg 具有高效,丰富的数据增强,工业级部署,全流程应用的特点:

  • 丰富的数据增强

基于百度视觉技术部的实际业务经验,内置10+种数据增强策略,可结合实际业务场景进行定制组合,提升模型泛化能力和鲁棒性。

  • 主流模型覆盖

支持U-Net,DeepLabv3 +,ICNet三类主流分割网络,结合预训练模型和可调节的骨干网络,满足不同性能和精度的要求。

  • 高效

PaddleSeg支持多进程IO,多卡并行,跨卡批量Norm同步等训练加速策略,结合飞轮核心框架的显存优化功能,可以大幅度减少分割模型的显着体积,从而完成分割模型训练。

  • 工业级部署

基于Paddle Serving和PaddlePaddle的高级预测引擎,结合百度开放的AI能力,轻松构建人像分割和车道线分割服务。

展开阅读全文

代码

的 Gitee 指数为
超过 的项目

评论

点击引领话题📣
暂无内容
发表了博客
{{o.pubDate | formatDate}}

{{formatAllHtml(o.title)}}

{{parseInt(o.replyCount) | bigNumberTransform}}
{{parseInt(o.viewCount) | bigNumberTransform}}
没有更多内容
暂无内容
发表了问答
{{o.pubDate | formatDate}}

{{formatAllHtml(o.title)}}

{{parseInt(o.replyCount) | bigNumberTransform}}
{{parseInt(o.viewCount) | bigNumberTransform}}
没有更多内容
暂无内容
0 评论
15 收藏
分享
OSCHINA
登录后可查看更多优质内容
返回顶部
顶部
返回顶部
顶部