基于 PaddlePaddle 开发的语义分割库 PaddleSeg

Apache-2.0
Python
跨平台
百度
2020-01-02
白开水不加糖

【年终提升】2019尾声,来 OSC·年终盛典收割技术干货,get新技能!>>>

PaddleSeg 是基于 PaddlePaddle 开发的语义分割库,覆盖了 DeepLabv3 +,U-Net,ICNet 三类主流的分割模型。通过统一的配置,帮助用户更方便地完成从训练到部署的全流程图像分割应用。

PaddleSeg 具有高效,丰富的数据增强,工业级部署,全流程应用的特点:

  • 丰富的数据增强

基于百度视觉技术部的实际业务经验,内置10+种数据增强策略,可结合实际业务场景进行定制组合,提升模型泛化能力和鲁棒性。

  • 主流模型覆盖

支持U-Net,DeepLabv3 +,ICNet三类主流分割网络,结合预训练模型和可调节的骨干网络,满足不同性能和精度的要求。

  • 高效

PaddleSeg支持多进程IO,多卡并行,跨卡批量Norm同步等训练加速策略,结合飞轮核心框架的显存优化功能,可以大幅度减少分割模型的显着体积,从而完成分割模型训练。

  • 工业级部署

基于Paddle Serving和PaddlePaddle的高级预测引擎,结合百度开放的AI能力,轻松构建人像分割和车道线分割服务。

的码云指数为
超过 的项目
加载中

评论(0)

暂无评论

暂无资讯

暂无问答

百度飞桨AI快车道图像语义分割专场(北京站)报名启动!

随着计算机视觉的发展,图像语义分割技术逐渐映入人们的眼帘,因其广泛的应用性而备受人们的重视。图像语义分割是图像理解的重要基石,在自动驾驶系统、无人机应用、工业质检等应用中举足轻重...

2019/08/21 14:57
78
0

没有更多内容

加载失败,请刷新页面

没有更多内容

返回顶部
顶部