## 我们不支持 IE 10 及以下版本浏览器

#### It appears you’re using an unsupported browser

MathJax首页、文档和下载 - Ajax的MathML公式显示方案 - 开源中国社区

7.2

Apache

63 人收藏

MathJax 详细介绍

MathJax 是一个开源的基于 Ajax 的数学公式显示的解决方案，结合多种先进的Web技术，支持主流的浏览器。MathJax 根据页面中定义的 LaTex 数据，生成对应的数学公式。

• High-quality display of LaTeX and MathML math notation in HTML pages
• Supported in most browsers with no plug-ins,  extra fonts or special setup for the reader
• Easy for authors, flexible for publishers, extensible for developers
• Supports math accessibility, cut and paste interoperability and other advanced functionality
• Powerful API for integration with other web applications

<p>The Lorenz Equations</p>
$\begin{matrix} \dot{x} &#038; = &#038; \sigma(y-x) \\ \dot{y} &#038; = &#038; \rho x - y - xz \\ \dot{z} &#038; = &#038; -\beta z + xy \end{matrix}$
<p>The Cauchy-Schwarz Inequality</p>
$\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$
<p>A Cross Product Formula</p>
$\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} &#038; \mathbf{j} &#038; \mathbf{k} \\ \frac{\partial X}{\partial u} &#038; \frac{\partial Y}{\partial u} &#038; 0 \\ \frac{\partial X}{\partial v} &#038; \frac{\partial Y}{\partial v} &#038; 0 \end{vmatrix}$

<p>The probability of getting $$k$$ heads when flipping $$n$$ coins is: </p>

$P(E) = {n \choose k} p^k (1-p)^{ n-k}$

<p>An Identity of Ramanujan</p>
$\frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } }$

MathJax 相关问答 (全部 1 个问答)