授权协议: MIT
开发语言: Python 查看源码 »
操作系统: 跨平台
收录时间: 2012-10-03
提 交 者: fxsjy

jieba

"结巴"中文分词:做最好的Python中文分词组件 "Jieba" 

Feature

  • 支持三种分词模式:

    • 精确模式,试图将句子最精确地切开,适合文本分析;

    • 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;

    • 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

  • 支持繁体分词

  • 支持自定义词典

在线演示

http://jiebademo.ap01.aws.af.cm/

(Powered by Appfog)

Python 2.x 下的安装

  • 全自动安装:easy_install jieba 或者 pip install jieba

  • 半自动安装:先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install

  • 手动安装:将jieba目录放置于当前目录或者site-packages目录

  • 通过import jieba 来引用 (第一次import时需要构建Trie树,需要几秒时间)

Python 3.x 下的安装

  • 目前master分支是只支持Python2.x 的

  • Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k

    git clone https://github.com/fxsjy/jieba.git
    git checkout jieba3k
    python setup.py install

Algorithm

  • 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)

  • 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合

  • 对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法

功能 1):分词

  • jieba.cut方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2)cut_all参数用来控制是否采用全模式

  • jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细

  • 注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode

  • jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list

代码示例( 分词 )

#encoding=utf-8
import jieba

seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
print "Full Mode:", "/ ".join(seg_list) #全模式

seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print "Default Mode:", "/ ".join(seg_list) #精确模式

seg_list = jieba.cut("他来到了网易杭研大厦") #默认是精确模式
print ", ".join(seg_list)

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") #搜索引擎模式
print ", ".join(seg_list)

Output:

【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学

【精确模式】: 我/ 来到/ 北京/ 清华大学

【新词识别】:他, 来到, 了, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)

【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造

功能 2) :添加自定义词典

  • 开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率

  • 用法: jieba.load_userdict(file_name) # file_name为自定义词典的路径

  • 词典格式和dict.txt一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开

  • 范例:

  • "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14

功能 3) :关键词提取

  • jieba.analyse.extract_tags(sentence,topK) #需要先import jieba.analyse

  • setence为待提取的文本

  • topK为返回几个TF/IDF权重最大的关键词,默认值为20

代码示例 (关键词提取)

https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py

功能 4) : 词性标注

  • 标注句子分词后每个词的词性,采用和ictclas兼容的标记法

  • 用法示例

    >>> import jieba.posseg as pseg
    >>> words =pseg.cut("我爱北京天安门")
    >>> for w in words:
    ...    print w.word,w.flag
    ...
    我 r
    爱 v
    北京 ns
    天安门 ns

功能 5) : 并行分词

  • 原理:将目标文本按行分隔后,把各行文本分配到多个python进程并行分词,然后归并结果,从而获得分词速度的可观提升

  • 基于python自带的multiprocessing模块,目前暂不支持windows

  • 用法:

    • jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数

    • jieba.disable_parallel() # 关闭并行分词模式

  • 例子: https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py

  • 实验结果:在4核3.4GHz Linux机器上,对金庸全集进行精确分词,获得了1MB/s的速度,是单进程版的3.3倍。

功能 6) : Tokenize:返回词语在原文的起始位置

  • 注意,输入参数只接受unicode

  • 默认模式

result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:
    print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限公司            start: 6                end:10
  • 搜索模式

result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
for tk in result:
    print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限                start: 6                end:8
word 公司                start: 8                end:10
word 有限公司            start: 6                end:10

功能 7) : ChineseAnalyzer for Whoosh搜索引擎


其他词典

  1. 占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small

  2. 支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big

下载你所需要的词典,然后覆盖jieba/dict.txt 即可或者用jieba.set_dictionary('data/dict.txt.big')

模块初始化机制的改变:lazy load (从0.28版本开始)

jieba采用延迟加载,"import jieba"不会立即触发词典的加载,一旦有必要才开始加载词典构建trie。如果你想手工初始jieba,也可以手动初始化。

import jieba
jieba.initialize() #手动初始化(可选)

在0.28之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:

jieba.set_dictionary('data/dict.txt.big')

例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py

分词速度

  • 1.5 MB / Second in Full Mode

  • 400 KB / Second in Default Mode

  • Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt

常见问题

1)模型的数据是如何生成的?https://github.com/fxsjy/jieba/issues/7

2)这个库的授权是? https://github.com/fxsjy/jieba/issues/2

更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed

Change Log

http://www.oschina.net/p/jieba/news#list

展开阅读全文

代码

jieba 的相关博客

JieBa

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: bu...

jieba库

---恢复内容开始--- 简介 ◆ jieba库是优秀的中文分词第三方库 ◆ jieba库和其他的第三方库一样,在cmd中使用pip install jie...

jieba中文分词

本文编程基于python2.7版本 参考来源: https://blog.csdn.net/qq_34337272/article/details/79554772 https://blog.csdn.net...

jieba的使用

1. 分词 分词是自然语言处理中最基础的一个步骤。而jieba分词是中文分词的一个比较好的工具。下面看看可以怎么用jieba进行分词...

jieba分词

一. 三种模式 精确模式,试图将句子最精确地切开,适合文本分析; 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常...

jieba 库

jieba库是python 一个重要的第三方中文分词函数库,但需要用户自行安装。 一、jieba 库简介 (1) jieba 库的分词原理是利用一个...

jieba库

一、jieba 库简介 (1) jieba 库的分词原理是利用一个中文词库,将待分词的内容与分词词库进行比对,通过图结构和动态规划方法...

jieba原理

一、jieba介绍 jieba库是一个简单实用的中文自然语言处理分词库。 jieba分词属于概率语言模型分词。概率语言模型分词的任务是...

jieba分词

  在处理英文文本时,由于英文文本天生自带分词效果,可以直接通过词之间的空格来分词(但是有些人名、地名等需要考虑作为一...

评论 (9)

加载中
支持
2019/11/20 17:33
回复
举报
打分: 力荐
我用的是mac,开了多进程反而慢了,是怎么回事呢?
2018/04/20 20:53
回复
举报
实现php版本结巴分词扩展 https://github.com/jonnywang/jz
2017/02/22 10:09
回复
举报
打分: 力荐
2016/12/22 15:45
回复
举报
请问我要在一段文字里筛选出tag,怎么处理呢?比如我一段商品介绍,自动生成10关键字做tag jieba
2012/10/12 23:17
回复
举报
有没有考虑jieba实现 whoosh的分词接口 jieba
2012/11/06 11:26
回复
举报
你好。能否增加一个开关,用来关闭对“对于未登录词的处理”。这幅神奇的全景图还把远在法国境内的浮日山脉及远在德国境内的黑森林也都囊括在内。 格莱宾登地区的风干牛肉片以及提契诺的意大利特产。这两句话居然出现了新词“及远”“宾登”太难理解了 jieba
2013/04/23 17:29
回复
举报
请教下语料库是怎么训练的?通过什么方法? jieba
2013/06/06 16:13
回复
举报
请问“结巴”输入数据文件的数据量大小有限制么?比如文件很大 jieba
2013/07/02 19:05
回复
举报
更多评论
9 评论
335 收藏
分享
返回顶部
顶部