ChatGLM2-6B 正在参加 2021 年度 OSC 中国开源项目评选,请投票支持!
ChatGLM2-6B 在 2021 年度 OSC 中国开源项目评选 中已获得 {{ projectVoteCount }} 票,请投票支持!
2021 年度 OSC 中国开源项目评选 正在火热进行中,快来投票支持你喜欢的开源项目!
2021 年度 OSC 中国开源项目评选 >>> 中场回顾
ChatGLM2-6B 获得 2021 年度 OSC 中国开源项目评选「最佳人气项目」 !
授权协议 未知
开发语言 Python
操作系统 跨平台
软件类型 开源软件
开源组织
地区 不详
投 递 者 白开水不加糖
适用人群 未知
收录时间 2023-06-26

软件简介

ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:

  1. 更强大的性能:基于 ChatGLM 初代模型的开发经验,全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
  2. 更长的上下文:基于 FlashAttention 技术,将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,会在后续迭代升级中着重进行优化。
  3. 更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
  4. 更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用

ChatGLM2-6B 开源模型旨在与开源社区一起推动大模型技术发展,恳请开发者和大家遵守开源协议,勿将开源模型和代码及基于开源项目产生的衍生物用于任何可能给国家和社会带来危害的用途以及用于任何未经过安全评估和备案的服务。目前,本项目团队未基于 ChatGLM2-6B 开发任何应用,包括网页端、安卓、苹果 iOS 及 Windows App 等应用。

尽管模型在训练的各个阶段都尽力确保数据的合规性和准确性,但由于 ChatGLM2-6B 模型规模较小,且模型受概率随机性因素影响,无法保证输出内容的准确性,且模型易被误导。本项目不承担开源模型和代码导致的数据安全、舆情风险或发生任何模型被误导、滥用、传播、不当利用而产生的风险和责任。

评测结果

以下为 ChatGLM2-6B 模型在 MMLU (英文)、C-Eval(中文)、GSM8K(数学)、BBH(英文) 上的测评结果。

MMLU

Model Average STEM Social Sciences Humanities Others
ChatGLM-6B 40.63 33.89 44.84 39.02 45.71
ChatGLM2-6B (base) 47.86 41.20 54.44 43.66 54.46
ChatGLM2-6B 45.46 40.06 51.61 41.23 51.24

Chat 模型使用 zero-shot CoT (Chain-of-Thought) 的方法测试,Base 模型使用 few-shot answer-only 的方法测试

C-Eval

Model Average STEM Social Sciences Humanities Others
ChatGLM-6B 38.9 33.3 48.3 41.3 38.0
ChatGLM2-6B (base) 51.7 48.6 60.5 51.3 49.8
ChatGLM2-6B 50.1 46.4 60.4 50.6 46.9

Chat 模型使用 zero-shot CoT 的方法测试,Base 模型使用 few-shot answer only 的方法测试

GSM8K

Model Accuracy Accuracy (Chinese)*
ChatGLM-6B 4.82 5.85
ChatGLM2-6B (base) 32.37 28.95
ChatGLM2-6B 28.05 20.45

所有模型均使用 few-shot CoT 的方法测试,CoT prompt 来自 http://arxiv.org/abs/2201.11903

* 我们使用翻译 API 翻译了 GSM8K 中的 500 道题目和 CoT prompt 并进行了人工校对

BBH

Model Accuracy
ChatGLM-6B 18.73
ChatGLM2-6B (base) 33.68
ChatGLM2-6B 30.00

所有模型均使用 few-shot CoT 的方法测试,CoT prompt 来自 https://github.com/suzgunmirac/BIG-Bench-Hard/tree/main/cot-prompt

展开阅读全文

代码

的 Gitee 指数为
超过 的项目

评论

点击加入讨论🔥(1) 发布并加入讨论🔥
发表了资讯
2023/10/28 10:31

智谱 AI 推出第三代基座大模型

2023年10月27日,智谱AI于2023中国计算机大会(CNCC)上,推出了全自研的第三代基座大模型ChatGLM3及相关系列产品。 以下汇总摘录自官方公告:https://mp.weixin.qq.com/s/SVq458IhrR2GGezA9goumw 全新技术升级 1. 更强大的性能: 今年以来,这是我们第三次对ChatGLM基座模型进行了深度优化。我们采用了独创的多阶段增强预训练方法,更丰富的训练数据和更优的训练方案,使训练更为充分。 评测显示,与ChatGLM二代模型相比,在4...

1
1
发表了资讯
2023/08/31 10:36

智谱生成式 AI 工具“智谱清言”正式上线

8 月 31 日,智谱 AI 宣布在各大应用商店正式上线首款生成式 AI 助手 ——「智谱清言」。用户可通过苹果商店 App Store、安卓主流商店(包括华为、OPPO、vivo 及小米等)进行下载,或在微信小程序中搜索「智谱清言」体验其功能。 根据介绍,该助手基于智谱 AI 自主研发的中英双语对话模型 ChatGLM2,经过万亿字符的文本与代码预训练,并采用有监督微调技术,以通用对话的形式为用户提供智能化服务。 「智谱清言」可作为用户的智...

0
0
发表了资讯
2023/07/28 10:46

ChatGLM2-12B 评测效果公布

距离 ChatGLM2 系列模型发布已有月余。日前,GLM 技术团队公布了 ChatGLM2-12B 在部分中英文典型数据集上的评测效果,数据集包括 MMLU(英文)、C-Eval(中文)、GSM8K(数学) 和 BBH(英文) 等。 “ChatGLM2-12B 模型在这些数据集上取得了不错的成绩。我们将继续不断改进和优化模型,以提供更优质的模型效果。” MMLU Chat 模型使用 zero-shot CoT (Chain-of-Thought) 的方法测试,Base 模型使用 few-shot answer-only 的方法测试。 ...

0
2
发表了资讯
2023/07/15 11:49

智谱 AI 官宣:ChatGLM2-6B 可免费商用

中英双语大模型 ChatGLM2-6B 开发团队——智谱AI&清华KEG昨晚宣布,即日起 ChatGLM-6B 和 ChatGLM2-6B 权重对学术研究完全开放,并且在完成企业登记获得授权后,允许免费商业使用。 ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性: 更强大的性能:基于 ChatGLM 初代模型的开发经验,全面升级了 ChatGLM2-6B 的基...

2
7
发表了资讯
2023/06/26 18:27

ChatGLM2-6B 发布:8-32k 上下文,推理提速 42%

GLM 技术团队宣布再次升级 ChatGLM-6B,发布 ChatGLM2-6B。ChatGLM-6B 于 3 月 14 日发布,截至 6 月 24 日在 Huggingface 上的下载量已经超过 300w。 截至 6 月 25 日,ChatGLM2 模型在主要评估 LLM 模型中文能力的 C-Eval 榜单中以 71.1 的分数位居 Rank 0;ChatGLM2-6B 模型则以 51.7 的分数位居 Rank 6,是榜单上排名最高的开源模型。 ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流...

2
7
没有更多内容
加载失败,请刷新页面
点击加载更多
加载中
下一页
发表了博客
{{o.pubDate | formatDate}}

{{formatAllHtml(o.title)}}

{{parseInt(o.replyCount) | bigNumberTransform}}
{{parseInt(o.viewCount) | bigNumberTransform}}
没有更多内容
暂无内容
发表了问答
{{o.pubDate | formatDate}}

{{formatAllHtml(o.title)}}

{{parseInt(o.replyCount) | bigNumberTransform}}
{{parseInt(o.viewCount) | bigNumberTransform}}
没有更多内容
暂无内容
暂无内容
1 评论
10 收藏
分享
OSCHINA
登录后可查看更多优质内容
返回顶部
顶部