BlazingSQL 正在参加 2021 年度 OSC 中国开源项目评选,请投票支持!
BlazingSQL 在 2021 年度 OSC 中国开源项目评选 中已获得 {{ projectVoteCount }} 票,请投票支持!
2021 年度 OSC 中国开源项目评选 正在火热进行中,快来投票支持你喜欢的开源项目!
2021 年度 OSC 中国开源项目评选 >>> 中场回顾
BlazingSQL 获得 2021 年度 OSC 中国开源项目评选「最佳人气项目」 !
授权协议 Apache
开发语言 C/C++ Python
操作系统 跨平台
软件类型 开源软件
开源组织
地区 不详
投 递 者 红薯
适用人群 未知
收录时间 2019-08-06

软件简介

BlazingSQL 是 RAPIDS 生态系统的 GPU 加速 SQL 引擎。

RAPIDS 包含一组软件库(BlazingSQLcuDFcuMLcuGraph),用来在 GPU 上执行端到端的数据科学计算和分析管道。

BlazingSQL是一个基于RAPIDS生态系统构建的GPU加速SQL引擎。 RAPIDS基于Apache Arrow柱状内存格式,cuDF是一个GPU DataFrame库,用于加载、连接、聚合、过滤和操作数据。

BlazingSQL是cuDF的SQL接口,具有支持大规模数据科学工作流和企业数据集的各种功能。

主要特性:

  • 查询外部存储数据 - 单行代码可以注册远程存储解决方案,例如Amazon S3。
  • 简单的SQL  - 非常容易使用,运行SQL查询,结果是GPU DataFrames(GDF)。
  • 互操作性 - 任何RAPIDS库都可以立即访问GDF以获取数据科学工作负载。

示例代码:

CVS 读取:

from blazingsql import BlazingContext
bc = BlazingContext()

# Create Table from CSV
bc.create_table('taxi', '/blazingdb/data/taxi.csv', delimiter= ',', names = column_names)

# Query
result = bc.sql('SELECT count(*) FROM main.taxi GROUP BY year(key)').get()
result_gdf = result.columns

#Print GDF 
print(result_gdf)

JSON 处理:

from blazingsql import BlazingContext
import cudf

bc = BlazingContext()

# Load JSON into GPU DataFrame (GDF)
taxi_gdf = cudf.io.json.read_json('taxi.json')

# Create Table from GDF
bc.create_table('taxi', taxi_gdf)

# Query
result = bc.sql('SELECT count(*) FROM main.taxi GROUP BY year(key)').get()
result_gdf = result.columns

#Print GDF 
print(result_gdf)

 

展开阅读全文

代码

的 Gitee 指数为
超过 的项目

评论

点击引领话题📣 发布并加入讨论🔥
暂无内容
发表了博客
{{o.pubDate | formatDate}}

{{formatAllHtml(o.title)}}

{{parseInt(o.replyCount) | bigNumberTransform}}
{{parseInt(o.viewCount) | bigNumberTransform}}
没有更多内容
暂无内容
发表了问答
{{o.pubDate | formatDate}}

{{formatAllHtml(o.title)}}

{{parseInt(o.replyCount) | bigNumberTransform}}
{{parseInt(o.viewCount) | bigNumberTransform}}
没有更多内容
暂无内容
暂无内容
0 评论
35 收藏
分享
OSCHINA
登录后可查看更多优质内容
返回顶部
顶部