UNIQUE 正在参加 2021 年度 OSC 中国开源项目评选,请投票支持!
UNIQUE 在 2021 年度 OSC 中国开源项目评选 中已获得 {{ projectVoteCount }} 票,请投票支持!
2021 年度 OSC 中国开源项目评选 正在火热进行中,快来投票支持你喜欢的开源项目!
2021 年度 OSC 中国开源项目评选 >>> 中场回顾
UNIQUE 获得 2021 年度 OSC 中国开源项目评选「最佳人气项目」 !
授权协议 Apache-2.0 License
开发语言
操作系统 跨平台
软件类型 开源软件
开源组织
地区 不详
投 递 者 首席测试
适用人群 未知
收录时间 2021-11-23

软件简介

UNIQUE

The codebase for
Uncertainty-aware blind image quality assessment in the laboratory and wild (TIP2021) and
Learning to blindly assess image quality in the laboratory and wild (ICIP2020)

image

Prequisite:

Python 3+
PyTorch 1.4+
Matlab
Successfully tested on Ubuntu18.04, other OS (i.e., other Linux distributions, Windows)should also be ok.

Usage

Sampling image pairs from multiple databases

data_all.m

Combining the sampled pairs to form the training set

combine_train.m

Training on multiple databases for 10 sessions

python Main.py --train True --network basecnn --representation BCNN --ranking True --fidelity True --std_modeling True --std_loss True --margin 0.025 --batch_size 128 --batch_size2 32 --image_size 384 --max_epochs 3 --lr 1e-4 --decay_interval 3 --decay_ratio 0.1 --max_epochs2 12

(As for ICIP version, set std_loss to False and sample pairs from TID2013 instead of KADID-10K.) (For training with binary labels, set fideliy and std_modeling to False.)

Output predicted quality scores and stds

python Main.py --train False --get_scores True

Result anlysis

Compute SRCC/PLCC after nonlinear mapping: result_analysis.m
Compute fidelity loss: eval_fidelity.m

Pre-trained weights

Google: https://drive.google.com/file/d/18oPH4lALm8mSdZh3fWK97MVq9w3BbEua/view?usp=sharing

Baidu: https://pan.baidu.com/s/1KKncQIoQcbxj7fQlSKUBIQ code:yyev

A basic demo: python demo.py

Link to download the BID dataset

The BID dataset may be difficult to find online, we provide links here:

Google: https://drive.google.com/drive/folders/1Qmtp-Fo1iiQiyf-9uRUpO-YAAM0mcIey?usp=sharing

Baidu: https://pan.baidu.com/s/1TTyb0FJzUdP6muLSbVN3hQ code: ptg0

Training/Testing Data

In addition to the source MATLAB code to generate training/testing data, you may also find the generated files here (If you do not want to generate them yourselve or if you do not have MATLAB):

Google: https://drive.google.com/file/d/1u-6xmedUB0PNA5xM787OY-YfiJg195xA/view

Baidu: https://pan.baidu.com/s/12nb6OTUxnz_rxssg2rthIQ code: 82k3

Citation

@article{zhang2021uncertainty,
title={Uncertainty-aware blind image quality assessment in the laboratory and wild},
author={Zhang, Weixia and Ma, Kede and Zhai, Guangtao and Yang, Xiaokang},
journal={IEEE Transactions on Image Processing},
volume = {30},
pages = {3474--3486},
month = {Mar.},
year={2021} }


@inproceedings{zhang2020learning,
title={Learning to blindly assess image quality in the laboratory and wild},
author={Zhang, Weixia and Ma, Kede and Zhai, Guangtao and Yang, Xiaokang},
booktitle={IEEE International Conference on Image Processing},
pages={111--115},
year={2020} }

展开阅读全文

代码

评论

点击引领话题📣 发布并加入讨论🔥
暂无内容
发表了博客
{{o.pubDate | formatDate}}

{{formatAllHtml(o.title)}}

{{parseInt(o.replyCount) | bigNumberTransform}}
{{parseInt(o.viewCount) | bigNumberTransform}}
没有更多内容
暂无内容
发表了问答
{{o.pubDate | formatDate}}

{{formatAllHtml(o.title)}}

{{parseInt(o.replyCount) | bigNumberTransform}}
{{parseInt(o.viewCount) | bigNumberTransform}}
没有更多内容
暂无内容
暂无内容
0 评论
0 收藏
分享
OSCHINA
登录后可查看更多优质内容
返回顶部
顶部