结巴分词 0.34 发布,Python 中文分词组件

fxsjy
 fxsjy
发布于 2014年10月20日
收藏 51

结巴分词 0.34 发布,更新内容如下:

2014-10-20: version 0.34
1. 提升性能,词典结构由Trie改为Prefix Set,内存占用减少2/3, 详见:https://github.com/fxsjy/jieba/pull/187;by @gumblex
2. 修复关键词提取功能的性能问题

jieba

"结巴"中文分词:做最好的Python中文分词组件 "Jieba" 

Feature

  • 支持三种分词模式:

    • 精确模式,试图将句子最精确地切开,适合文本分析;

    • 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;

    • 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

  • 支持繁体分词

  • 支持自定义词典

在线演示

http://jiebademo.ap01.aws.af.cm/

(Powered by Appfog)

Python 2.x 下的安装

  • 全自动安装:easy_install jieba 或者 pip install jieba

  • 半自动安装:先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install

  • 手动安装:将jieba目录放置于当前目录或者site-packages目录

  • 通过import jieba 来引用 (第一次import时需要构建Trie树,需要几秒时间)

Python 3.x 下的安装

  • 目前master分支是只支持Python2.x 的

  • Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k

    git clone https://github.com/fxsjy/jieba.git
    git checkout jieba3k
    python setup.py install

Algorithm

  • 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)

  • 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合

  • 对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法

功能 1):分词

  • jieba.cut方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2)cut_all参数用来控制是否采用全模式

  • jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细

  • 注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode

  • jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list

代码示例( 分词 )

#encoding=utf-8
import jieba

seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
print "Full Mode:", "/ ".join(seg_list) #全模式

seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print "Default Mode:", "/ ".join(seg_list) #精确模式

seg_list = jieba.cut("他来到了网易杭研大厦") #默认是精确模式
print ", ".join(seg_list)

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") #搜索引擎模式
print ", ".join(seg_list)

Output:

【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学

【精确模式】: 我/ 来到/ 北京/ 清华大学

【新词识别】:他, 来到, 了, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)

【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造

功能 2) :添加自定义词典

  • 开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率

  • 用法: jieba.load_userdict(file_name) # file_name为自定义词典的路径

  • 词典格式和dict.txt一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开

  • 范例:

  • "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14

功能 3) :关键词提取

  • jieba.analyse.extract_tags(sentence,topK) #需要先import jieba.analyse

  • setence为待提取的文本

  • topK为返回几个TF/IDF权重最大的关键词,默认值为20

代码示例 (关键词提取)

https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py

功能 4) : 词性标注

  • 标注句子分词后每个词的词性,采用和ictclas兼容的标记法

  • 用法示例

    >>> import jieba.posseg as pseg
    >>> words =pseg.cut("我爱北京天安门")
    >>> for w in words:
    ...    print w.word,w.flag
    ...
    我 r
    爱 v
    北京 ns
    天安门 ns

功能 5) : 并行分词

  • 原理:将目标文本按行分隔后,把各行文本分配到多个python进程并行分词,然后归并结果,从而获得分词速度的可观提升

  • 基于python自带的multiprocessing模块,目前暂不支持windows

  • 用法:

    • jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数

    • jieba.disable_parallel() # 关闭并行分词模式

  • 例子: https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py

  • 实验结果:在4核3.4GHz Linux机器上,对金庸全集进行精确分词,获得了1MB/s的速度,是单进程版的3.3倍。

功能 6) : Tokenize:返回词语在原文的起始位置

  • 注意,输入参数只接受unicode

  • 默认模式

result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:
    print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限公司            start: 6                end:10
  • 搜索模式

result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
for tk in result:
    print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限                start: 6                end:8
word 公司                start: 8                end:10
word 有限公司            start: 6                end:10

功能 7) : ChineseAnalyzer for Whoosh搜索引擎


其他词典

  1. 占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small

  2. 支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big

下载你所需要的词典,然后覆盖jieba/dict.txt 即可或者用jieba.set_dictionary('data/dict.txt.big')

模块初始化机制的改变:lazy load (从0.28版本开始)

jieba采用延迟加载,"import jieba"不会立即触发词典的加载,一旦有必要才开始加载词典构建trie。如果你想手工初始jieba,也可以手动初始化。

import jieba
jieba.initialize() #手动初始化(可选)

在0.28之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:

jieba.set_dictionary('data/dict.txt.big')

例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py

分词速度

  • 1.5 MB / Second in Full Mode

  • 400 KB / Second in Default Mode

  • Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt

常见问题

1)模型的数据是如何生成的?https://github.com/fxsjy/jieba/issues/7

2)这个库的授权是? https://github.com/fxsjy/jieba/issues/2

更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed

Change Log

http://www.oschina.net/p/jieba/news#list


本站文章除注明转载外,均为本站原创或编译。欢迎任何形式的转载,但请务必注明出处,尊重他人劳动共创开源社区。
转载请注明:文章转载自 OSCHINA 社区 [http://www.oschina.net]
本文标题:结巴分词 0.34 发布,Python 中文分词组件
加载中

最新评论(8

orangleliu
orangleliu
好的
红薯
红薯
http://git.oschina.net/fxsjy/jieba
上还没更新哦:)
OSC首席键客
OSC首席键客

引用来自“kslr”的评论

楼山的你们是对PHP走火入魔了吗,身为php and python er的我都不好意思与你们为伍了,好歹尊重一下别人吧。
应该说1楼走火入魔了,你可以看下他的帖子。
RenKaidi
RenKaidi
真的很酷
kslr
kslr
楼山的你们是对PHP走火入魔了吗,身为php and python er的我都不好意思与你们为伍了,好歹尊重一下别人吧。
kslr
kslr
内存减少的真是太棒了
W_Lu
W_Lu

引用来自“eechen”的评论

SCWS 是 Simple Chinese Words Segmentation 的缩写,即简易中文分词系统。
这是一套基于词频词典的机械中文分词引擎,它能将一整段的汉字基本正确的切分成词。
SCWS为PHP提供有PECL扩展,体验一下分词效果:
http://www.xunsearch.com/scws/demo/v48.php

迅搜XunSearch(Xapian搜索引擎 + SCWS中文分词)是采用C/C++基于Xapian和SCWS开发的全文搜索引擎解决方案,提供PHP语言的开发接口。
支持海量数据高速检索,功能强大,简单易用!
http://www.xunsearch.com/site/about
Xunsearch 底层采用 C/C++ 编写,其中用到了许多其它优秀项目,在线特别感谢它们的团队和作者。
主要有以下几个:
xapian-core 这是 Xunsearch 的底层索引设计方案
scws 默认内置的中文分词解决方案
libevent 后端服务器的事件处理模型
nginx 搜索服务器的设计借鉴了 nginx 的方式,采用多进程、多线程混合用于处理高并发请求
Yii 非常优秀的 PHP 开发框架,xunsearch 官网采用该框架,文档组织形式也参考自 Yii
一级棒!!!
eechen
eechen
SCWS 是 Simple Chinese Words Segmentation 的缩写,即简易中文分词系统。
这是一套基于词频词典的机械中文分词引擎,它能将一整段的汉字基本正确的切分成词。
SCWS为PHP提供有PECL扩展,体验一下分词效果:
http://www.xunsearch.com/scws/demo/v48.php

迅搜XunSearch(Xapian搜索引擎 + SCWS中文分词)是采用C/C++基于Xapian和SCWS开发的全文搜索引擎解决方案,提供PHP语言的开发接口。
支持海量数据高速检索,功能强大,简单易用!
http://www.xunsearch.com/site/about
Xunsearch 底层采用 C/C++ 编写,其中用到了许多其它优秀项目,在线特别感谢它们的团队和作者。
主要有以下几个:
xapian-core 这是 Xunsearch 的底层索引设计方案
scws 默认内置的中文分词解决方案
libevent 后端服务器的事件处理模型
nginx 搜索服务器的设计借鉴了 nginx 的方式,采用多进程、多线程混合用于处理高并发请求
Yii 非常优秀的 PHP 开发框架,xunsearch 官网采用该框架,文档组织形式也参考自 Yii
返回顶部
顶部