基于 Java 的 LLM 应用开发及编排框架,Agents-Flex beta.7 发布

来源: 投稿
作者: 开源海哥
2024-07-05 09:08:00

Agents-Flex: 一个基于 Java 的 LLM(大语言模型)应用开发及编排框架。


基本能力

  • LLM 的访问能力
  • Prompt、Prompt Template 定义加载的能力
  • Function Calling 定义、调用和执行等能力
  • 记忆的能力(Memory)
  • Embedding
  • Vector Store
  • 文档处理
    • 加载器(Loader)
      • Http
      • FileSystem
    • 分割器(Splitter)
    • 解析器(Parser)
      • PoiParser
      • PdfBoxParser
  • Agent
    • LLM Agent
    • IOAgent
  • Chain 执行链
    • SequentialChain 顺序执行链
    • ParallelChain 并发(并行)执行链
    • LoopChain 循环执行连
    • ChainNode
      • AgentNode Agent 执行节点
      • EndNode 终点节点
      • RouterNode 路由节点
        • GroovyRouterNode Groovy 规则路由
        • QLExpressRouterNode QLExpress 规则路由
        • LLMRouterNode LLM 路由(由 AI 自行判断路由规则)

Agents-Flex beta.7 更新细节:

  • 新增:新增图片模型的支持
  • 新增:新增 SimpleTokenizeSplitter 分割器
  • 新增:新增 OmniParseDocumentParser 文档解析器
  • 新增:新增 openai、stability ai 以及 gitee ai 对图片生成的支持
  • 新增:新增月之暗面的支持
  • 优化:优化 llm 客户端的细节
  • 优化:优化星火大模型的细节
  • 优化:优化 slf4j 依赖的细节
  • 优化:优化 Agent 和 Chain 的定义细节
  • 测试:添加 .pdf 和 .doc 的解析测试
  • 测试:添加文档分割器的测试
  • 测试:添加 token 文档分割器的测试

 

简单对话

使用 OpenAi 大语言模型:

 @Test
public void testChat() {
    OpenAiLlmConfig config = new OpenAiLlmConfig();
    config.setApiKey("sk-rts5NF6n*******");

    Llm llm = new OpenAiLlm(config);
    String response = llm.chat("请问你叫什么名字");

    System.out.println(response);
}

使用 “通义千问” 大语言模型:

@Test
public void testChat() {
    QwenLlmConfig config = new QwenLlmConfig();
    config.setApiKey("sk-28a6be3236****");
    config.setModel("qwen-turbo");

    Llm llm = new QwenLlm(config);
    String response = llm.chat("请问你叫什么名字");

    System.out.println(response);
}

使用 “讯飞星火” 大语言模型:

@Test
public void testChat() {
    SparkLlmConfig config = new SparkLlmConfig();
    config.setAppId("****");
    config.setApiKey("****");
    config.setApiSecret("****");

    Llm llm = new SparkLlm(config);
    String response = llm.chat("请问你叫什么名字");

    System.out.println(response);
}

历史对话示例

public static void main(String[] args) {
    SparkLlmConfig config = new SparkLlmConfig();
    config.setAppId("****");
    config.setApiKey("****");
    config.setApiSecret("****");

    Llm llm = new SparkLlm(config);

    HistoriesPrompt prompt = new HistoriesPrompt();

    System.out.println("您想问什么?");
    Scanner scanner = new Scanner(System.in);
    String userInput = scanner.nextLine();

    while (userInput != null) {

        prompt.addMessage(new HumanMessage(userInput));

        llm.chatStream(prompt, (context, response) -> {
            System.out.println(">>>> " + response.getMessage().getContent());
        });

        userInput = scanner.nextLine();
    }
}

Function Calling

  • 第一步:通过注解定义本地方法
public class WeatherUtil {

    @FunctionDef(name = "get_the_weather_info", description = "get the weather info")
    public static String getWeatherInfo(
        @FunctionParam(name = "city", description = "the city name") String name
    ) {
        //在这里,我们应该通过第三方接口调用 api 信息
        return name + "的天气是阴转多云。 ";
    }
}
  • 第二步:通过 Prompt、Functions 传入给大模型,然后得到结果
 public static void main(String[] args) {

    OpenAiLlmConfig config = new OpenAiLlmConfig();
    config.setApiKey("sk-rts5NF6n*******");

    OpenAiLlm llm = new OpenAiLlm(config);

    FunctionPrompt prompt = new FunctionPrompt("今天北京的天气怎么样", WeatherUtil.class);
    FunctionResultResponse response = llm.chat(prompt);

    Object result = response.invoke();

    System.out.println(result);
    //"北京的天气是阴转多云。 "
}

模块构成

 

开源地址​:

展开阅读全文
点击加入讨论🔥(1) 发布并加入讨论🔥
1 评论
7 收藏
分享
返回顶部
顶部