当前访客身份:游客 [ 登录 | 加入开源中国 ]

代码分享

当前位置:
代码分享 » Java  » 图形和图像处理
猪圈

12306验证码识别

猪圈 发布于 2013年01月18日 5时, 64评/23271阅
分享到: 
收藏 +0
6
干扰线去除判断比较挫是导致识别率低的原因,希望高手指点吧~后面的特征提取和训练识别就交给大家了~ (很不幸地告诉大家,上班前12306的验证码干扰又加强了,主要还是干扰线部分)
实现原理很简单:
1.图像灰度化与 二值化
2.去除干扰线(二值化在一定程度上已经消弱部分)

在5点以前,12306二值化后的图像干扰线是离散的,所以很容易地使用纵向扫描就能擦除干扰点提取字模,代码如下:
		for (int x = 0; x < w; ++x) {
			for (int y = 0; y < h; ++y) {
				if (isBlack(gray[x][y])) {
					if (x > 0 && x < (w - 1) && isWhite(gray[x - 1][y]) && isWhite(gray[x + 1][y])) {
						gray[x][y] = 65535;
					}
				}
			}
		}
		
		for (int x = 0; x < w; ++x) {
			for (int y = 0; y < h; ++y) {
				if (isBlack(gray[x][y])) {
					if (y > 0 && y < (h - 1) && isWhite(gray[x][y - 1]) && isWhite(gray[x][y + 1])) {
						gray[x][y] = 65535;
					}
				}
				binaryBufferedImage.setRGB(x, y, gray[x][y]);
			}
		}

注:目前该方法已经不奏效,已经删除~(16:18更新调整亮度提高识别率)
标签: <无>

代码片段(1) [全屏查看所有代码]

1. [代码][Java]代码     跳至 [1] [全屏预览]

package org.chinasb.client;

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;

import javax.imageio.ImageIO;

public class BinaryTest {

    public static void main(String[] args) throws IOException {
        BufferedImage bufferedImage = ImageIO.read(new File("D:/passCodeAction.jpg"));
        int h = bufferedImage.getHeight();
        int w = bufferedImage.getWidth();
        
        // 灰度化
        int[][] gray = new int[w][h];
        for (int x = 0; x < w; x++) {
            for (int y = 0; y < h; y++) {
                int argb = bufferedImage.getRGB(x, y);
                // 图像加亮(调整亮度识别率非常高)
                int r = (int)(((argb >> 16) & 0xFF) * 1.1 + 30);
                int g = (int)(((argb >> 8) & 0xFF) * 1.1 + 30);
                int b = (int)(((argb >> 0) & 0xFF) * 1.1 + 30);
                if (r >= 255) {
                    r = 255;
                }
                if (g >= 255) {
                    g = 255;
                }
                if (b >= 255) {
                    b = 255;
                }
                gray[x][y] = (int) Math.pow((Math.pow(r, 2.2) * 0.2973 + Math.pow(g, 2.2) * 0.6274 + Math.pow(b, 2.2) * 0.0753), 1/2.2);
            }
        }

        // 二值化
        int threshold = ostu(gray, w, h);
        BufferedImage binaryBufferedImage = new BufferedImage(w, h, BufferedImage.TYPE_BYTE_BINARY);
        for (int x = 0; x < w; x++) {
            for (int y = 0; y < h; y++) {
                if (gray[x][y] > threshold) {
                    gray[x][y] |= 0x00FFFF;
                } else {
                    gray[x][y] &= 0xFF0000;
                }
                binaryBufferedImage.setRGB(x, y, gray[x][y]);
            }
        }

        // 矩阵打印
        for (int y = 0; y < h; y++) {
            for (int x = 0; x < w; x++) {
                if (isBlack(binaryBufferedImage.getRGB(x, y))) {
                    System.out.print("*");
                } else {
                    System.out.print(" ");
                }
            }
            System.out.println();
        }

        ImageIO.write(binaryBufferedImage, "jpg", new File("D:/code.jpg"));
    }

    public static boolean isBlack(int colorInt) {
        Color color = new Color(colorInt);
        if (color.getRed() + color.getGreen() + color.getBlue() <= 300) {
            return true;
        }
        return false;
    }

    public static boolean isWhite(int colorInt) {
        Color color = new Color(colorInt);
        if (color.getRed() + color.getGreen() + color.getBlue() > 300) {
            return true;
        }
        return false;
    }

    public static int isBlackOrWhite(int colorInt) {
        if (getColorBright(colorInt) < 30 || getColorBright(colorInt) > 730) {
            return 1;
        }
        return 0;
    }

    public static int getColorBright(int colorInt) {
        Color color = new Color(colorInt);
        return color.getRed() + color.getGreen() + color.getBlue();
    }

    public static int ostu(int[][] gray, int w, int h) {
        int[] histData = new int[w * h];
        // Calculate histogram
        for (int x = 0; x < w; x++) {
            for (int y = 0; y < h; y++) {
                int red = 0xFF & gray[x][y];
                histData[red]++;
            }
        }

        // Total number of pixels
        int total = w * h;
        
        float sum = 0;
        for (int t = 0; t < 256; t++)
            sum += t * histData[t];

        float sumB = 0;
        int wB = 0;
        int wF = 0;

        float varMax = 0;
        int threshold = 0;

        for (int t = 0; t < 256; t++) {
            wB += histData[t]; // Weight Background
            if (wB == 0)
                continue;

            wF = total - wB; // Weight Foreground
            if (wF == 0)
                break;

            sumB += (float) (t * histData[t]);

            float mB = sumB / wB; // Mean Background
            float mF = (sum - sumB) / wF; // Mean Foreground

            // Calculate Between Class Variance
            float varBetween = (float) wB * (float) wF * (mB - mF) * (mB - mF);

            // Check if new maximum found
            if (varBetween > varMax) {
                varMax = varBetween;
                threshold = t;
            }
        }

        return threshold;
    }
}


开源中国-程序员在线工具:Git代码托管 API文档大全(120+) JS在线编辑演示 二维码 更多»

发表评论 回到顶部 网友评论(64)

  • 1楼:JadeChong 发表于 2013-01-18 08:41 回复此评论
    火前留名。
  • 2楼:主编 发表于 2013-01-18 08:54 回复此评论

    引用来自“SirFeshion”的评论

    火前留名。
    +1
  • 3楼:铂金蛋蛋 发表于 2013-01-18 08:56 回复此评论

    引用来自“haojay”的评论

    引用来自“SirFeshion”的评论

    火前留名。
    +1
    +1
  • 4楼:kidbei 发表于 2013-01-18 09:02 回复此评论
    这个必须顶,一直没想到怎么识别图片。留着漫漫看
  • 5楼:此号已注销 发表于 2013-01-18 09:04 回复此评论
  • 6楼:炘恪 发表于 2013-01-18 09:14 回复此评论

    引用来自“erimer”的评论

    引用来自“haojay”的评论

    引用来自“SirFeshion”的评论

    火前留名。
    +1
    +1
    +1
  • 7楼:老范的自留地 发表于 2013-01-18 09:22 回复此评论
    刘明
  • 8楼:丶深蓝 发表于 2013-01-18 09:41 回复此评论

    引用来自“炘恪”的评论

    引用来自“erimer”的评论

    引用来自“haojay”的评论

    引用来自“SirFeshion”的评论

    火前留名。
    +1
    +1
    +1
    +1
  • 9楼:壹爱 发表于 2013-01-18 09:45 回复此评论
    强力   给力。
  • 10楼:孙建希 发表于 2013-01-18 09:47 回复此评论
    作为一个嵌入式方向的,很想了解实现原理!
  • 11楼:bobshi 发表于 2013-01-18 11:08 回复此评论
    怎么样,有效果吗?
  • 12楼:zaobao 发表于 2013-01-18 12:26 回复此评论
    铁道部门技术有待加强。
  • 13楼:stevenliu 发表于 2013-01-18 12:26 回复此评论
    tesseract-ocr调用吧 算出来比你准 毕竟是Google收购的Oracle的验证码识别 所以比你写的估计强百倍勒!!!
  • 14楼:猪圈 发表于 2013-01-18 14:25 回复此评论

    引用来自“stevenliu”的评论

    tesseract-ocr调用吧 算出来比你准 毕竟是Google收购的Oracle的验证码识别 所以比你写的估计强百倍勒!!!
    OCR前必须预处理图像才能提高识别率~
  • 15楼:淡定 发表于 2013-01-18 14:29 回复此评论

    引用来自“sun868102”的评论

    引用来自“炘恪”的评论

    引用来自“erimer”的评论

    引用来自“haojay”的评论

    引用来自“SirFeshion”的评论

    火前留名。
    +1
    +1
    +1
    +1
    +1
  • 16楼:仪山湖 发表于 2013-01-18 14:36 回复此评论

    引用来自“stevenliu”的评论

    tesseract-ocr调用吧 算出来比你准 毕竟是Google收购的Oracle的验证码识别 所以比你写的估计强百倍勒!!!
    顶楼主,支持原创。。。
  • 17楼:stevenliu 发表于 2013-01-18 15:24 回复此评论

    引用来自“仪山湖”的评论

    引用来自“stevenliu”的评论

    tesseract-ocr调用吧 算出来比你准 毕竟是Google收购的Oracle的验证码识别 所以比你写的估计强百倍勒!!!
    顶楼主,支持原创。。。
    好吧 我失败了 我也支持楼主!!!
  • 18楼:222999 发表于 2013-01-18 15:38 回复此评论

    楼主 我没看明白。。。。

  • 19楼:笨笨猴 发表于 2013-01-18 17:23 回复此评论
    凑个热闹
  • 20楼:Elson 发表于 2013-01-18 17:31 回复此评论
    洋气
开源从代码分享开始 分享代码
猪圈的其它代码 全部(9)...